A Note on the Boltzmann Equation for Hard Spheres

Y. Pomeau ${ }^{1}$

Received December 20, 1984
A simple form of the Boltzmann kinetic equation for hard spheres is proposed.

In the course of investigations on the structure of shock waves at large Mach number, I have been led to look for a form of the Boltzmann equation for hard spheres that were as simple as possible. The form that I have found is, as far as I know, original and could be useful (for instance) in numerical researches on the kinetic theory of the hard sphere gas. Let $f(\mathbf{c}, t)$ be the velocity distribution, the Boltzmann kinetic equation for the hard sphere system reads ${ }^{(1)}$

$$
\begin{equation*}
\frac{\partial f}{\partial t}=B[f, f] \tag{1}
\end{equation*}
$$

where

$$
B=B_{l}+B_{g}
$$

with

$$
\begin{equation*}
B_{l} \equiv-4 \pi \int d \mathbf{c}_{1} f\left(\mathbf{c}_{1}\right)\left|\mathbf{c}-\mathbf{c}_{1}\right| f(\mathbf{c}) \tag{2}
\end{equation*}
$$

and

$$
\begin{align*}
B_{g} \equiv & \int d \mathbf{c}_{1} \int d \hat{n} f\left(\frac{\mathbf{c}+\mathbf{c}_{1}}{2}+\frac{\hat{n}}{2}\left|\mathbf{c}-\mathbf{c}_{1}\right|\right) \\
& \times f\left(\frac{\mathbf{c}+\mathbf{c}_{1}}{2}-\frac{\hat{n}}{2}\left|\mathbf{c}-\mathbf{c}_{1}\right|\right)\left|\mathbf{c}-\mathbf{c}_{1}\right| \tag{3}
\end{align*}
$$

[^0]\hat{n} being the unit vector [$\left.\int d \hat{n}=4 \pi\right]$. A few simple transformation give the following expression for the loss term $\left(B_{l}\right)$, in the case of isotropic distributions (f depends on $|\mathbf{c}|$ only):
$$
B_{1}=-8 \pi^{2} \int_{0}^{\infty} d c_{1} c_{1}^{2} f\left(c_{1}\right) f(c) L\left(c, c_{1}\right)
$$
where
$$
L\left(c, c_{1}\right)=\frac{2}{3 \mathrm{c}}\left(3 \mathrm{c}^{2}+c_{1}^{2}\right) \quad \text { if } \quad c \geqslant c_{1}
$$
and
$$
\frac{2}{3 c_{1}}\left(3 c_{1}^{2}+c^{2}\right) \quad \text { if } \quad c \leqslant c_{1}
$$

The gain term B_{g} is less easy to transform. We shall obtain two successive expressions, the first one valid for an arbitrary distribution [Eq. (4) below], the second one for an isotropic distribution [Eqs. (5) and (8) below]. This last one only is interesting for computational purposes, because it reduces (3) to a two-dimensional integral, although in general the form given in (4) does not lower the number of integration variables.

Let us write $\int d \hat{n}(\cdots)$ as $\frac{1}{2} \int d \mathbf{n} \delta\left(n^{2}-1\right)(\cdots) \delta=$ Dirac function, and make in (3) the changes $\mathbf{c}_{\mathbf{1}} \rightarrow \mathbf{c}+\xi$ and $\mathbf{n} \rightarrow \mathbf{n}=\mathbf{N} / \xi$. This yields from (3)

$$
B_{g}=\frac{1}{2} \int d \xi \int d \mathbf{N} \delta\left(N^{2}-\xi^{2}\right) f\left(\mathbf{c}+\frac{\xi+\mathbf{N}}{2}\right) f\left(\mathbf{c}+\frac{\xi-\mathbf{N}}{2}\right)
$$

Replace now ξ by $\xi^{*}=\xi+2$ c as integration variable, and then take $\mathbf{x}_{ \pm}=\left(\xi^{*} \pm \mathbf{N}\right) / 2$ as integration variables instead of \mathbf{N} and ξ^{*}
$B_{g}=4 \int d \mathbf{x}_{+} \int d \mathbf{x}_{-} \delta\left(\mathbf{c} \cdot\left(\mathbf{x}_{+}+\mathbf{x}_{-}\right)-c^{2}-\mathbf{x}_{+} \cdot \mathbf{x}_{-}\right) f\left(\mathbf{x}_{+}\right) f\left(\mathbf{x}_{-}\right)$
This is our general expression for B_{g}. Let us now restrict ourselves to the case of isotropic distributions. In that case, B_{g} depends on $|\mathbf{c}|=c$ only, and one has

$$
B_{g}=\frac{1}{4 \pi} \int d \hat{c} B_{g}(c)
$$

where \hat{c} is the unit vector such that $\mathbf{c}=\hat{c} c$. Thus (4) can now be written as

$$
\begin{equation*}
B_{g}=4 \int_{0}^{\infty} d x_{+} x_{+}^{2} f\left(x_{+}\right) \int_{0}^{\infty} d x_{-} x_{-}^{2} f\left(x_{-}\right) M\left(x_{+}, x_{-} ; c\right) \tag{5.a}
\end{equation*}
$$

where
$M\left(x_{+}, x_{-} ; c\right)=\frac{1}{4 \pi} \int d \hat{c} \int d \hat{x}_{+} \int d \hat{x}_{-} \delta\left(\mathbf{c} \cdot\left(\mathbf{x}_{+}+\mathbf{x}_{-}\right)-c^{2}-\mathbf{x}_{+} \cdot \mathbf{x}_{-}\right)$
$\hat{x}_{ \pm}$being the unit vector(s) parallel to $\mathbf{x}_{ \pm}$. Performing in (5.b) the \hat{c} integration, one finds

$$
\begin{align*}
& \frac{1}{4 \pi} \int d \hat{c} \delta\left(\mathbf{c} \cdot\left(\mathbf{x}_{+}+\mathbf{x}_{-}\right)-c^{2}-\mathbf{x}_{+} \cdot \mathbf{x}_{-}\right) \\
& \quad=\frac{1}{2 c\left|\mathbf{x}_{+}+\mathbf{x}_{-}\right|} \chi_{[-1,+1]}\left(\frac{c^{2}+\mathbf{x}_{+} \cdot \mathbf{x}_{-}}{c\left|\mathbf{x}_{+}+\mathbf{x}_{-}\right|}\right) \tag{6}
\end{align*}
$$

where $\chi_{[-1,+1]}(u)$ is the characteristic function of the $[-1,+1]$ interval. Its value is +1 if $-1 \leqslant u \leqslant+1$ and zero otherwise. From (5) and (6)

$$
\begin{align*}
M\left(x_{+}, x_{-} ; c\right)= & \frac{4 \pi^{2}}{c} \int_{-1}^{+1} \frac{d v}{\left(x_{+}^{2}+x_{-}^{2}+2 x_{+} x_{-} v\right)^{1 / 2}} \\
& \times \chi_{[-1,+1]}\left[\frac{c^{2}+x_{+} x_{-} v}{c\left(x_{+}^{2}+x_{-}^{2}+2 x_{+} x_{-} v\right)^{1 / 2}}\right] \tag{7}
\end{align*}
$$

This last integral can be computed, and one obtains our final result. The support of $M\left(x_{+}, x_{-} ; c\right)$ as a function of x_{+}and x_{-}is the quarter plane $x_{ \pm} \geqslant 0$. From the energy conservation $x_{+}^{2}+x_{-}^{2} \geqslant c^{2}$, so that M is nonzero outside the quarter circle $x_{+}^{2}+x_{-}^{2}=c^{2}$ only. The consideration of the argument of the characteristic function in (7) leads one to introduce the quartic Q of Cartesian equation $x_{+}^{2} x_{-}^{2}+c^{4}=\left(x_{+}^{2}+x_{-}^{2}\right) c^{2}$, and to divide the quarter plane into three regions: $\Gamma_{1, a-b}$ are in between Q and the circle of Cartesian equation $x_{+}^{2}+x_{-}^{2}=c^{2}$. In $\Gamma_{1, a} x_{+}>x_{-}$although $x_{+} \leqslant x_{-}$in $\Gamma_{1, b}$. Let furthermore Γ_{2} be the region outside of Q.
Thus

$$
\begin{align*}
& \text { in } \Gamma_{1, a} \tag{8.a}\\
& \text { in } \Gamma_{1, b} \tag{8.b}
\end{align*} M\left(x_{+}, x_{-} ; c\right)=\frac{2 \pi^{2}}{x_{+} c}, ~\left(x_{+}, x_{-} ; c\right)=\frac{2 \pi^{2}}{x_{-} c}
$$

and

$$
\text { in } \begin{align*}
\Gamma_{2} \quad M\left(x_{+}, x_{-} ; c\right) & =\frac{\pi^{2}}{x_{+} x_{-} c} \\
& \times\left[\left(x_{+}^{2}+x_{-}^{2}+2 w^{2}\right)^{1 / 2}-\left(x_{+}^{2}+x_{-}^{2}-2 w^{2}\right)^{1 / 2}\right] \tag{8.c}
\end{align*}
$$

where $w^{2}=\left[c^{2}\left(x_{+}^{2}+x_{-}^{2}\right)-c^{4}\right]^{1 / 2}$. As a function of $x_{ \pm}, M\left(x_{+}, x_{-} ; c\right)$ is continuous, but has discontinuous first derivatives in Q and on the first bisectrix.

REFERENCES

1. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, Chap. V (Cambridge University Press, Cambridge, 1972).

[^0]: ${ }^{1}$ Service de Physique Théorique, CEN-Saclay, 91191 Gif-sur-Yvette Cedex, France.

