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A Note on the Boitzmann Equation 
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A simple form of the Boltzmann kinetic equation for hard spheres is proposed. 

In the course of investigations on the structure of shock waves at large 
Mach number, I have been led to look for a form of the Boltzmann 
equation for hard spheres that were as simple as possible. The form that I 
have found is, as far as I know, original and could be useful (for instance) 
in numerical researches on the kinetic theory of the hard sphere gas. Let 
f (c ,  t) be the velocity distribution, the Boltzmann kinetic equation for the 
hard sphere system reads (11 

O f = B [ f , , f ]  (1) 
Qt 

where 

with 

and 

B = Bt + Bg 

Bt~ -4~  f de if(c1) jc-clj  f(c) 

-c~l) Bg~-f dClf dr~ f (c ~---~cl + ~ [c 

x f(c+c~2 2~ ~c-c~Jt Ic- Cl 

(2) 

(3) 
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being the unit vector [~ dA = 47@ A few simple transformation give the 
following expression for the loss term (Bl), in the case of isotropic dis- 
tributions ( f  depends on lel only): 

B~= -8rt 2 dc 1 c~f(cl)f(c) L(c, cl) 

where 

and 

2 
L(c, cl)=~c(3C2+C~) if c~c  I 

2 
3c-- (3c~ + c 2) if c ~ C 1 

The gain t e r m  Bg is less easy to transform. We shall obtain two suc- 
cessive expressions, the first one valid for an arbitrary distribution [Eq. (4) 
below], the second one for an isotropic distribution [Eqs. (5) and (8) 
below]. This last one only is interesting for computational purposes, 
because it reduces (3) to a two-dimensional integral, although in general 
the form given in (4) does not lower the number of integration variables. 

Let us write ~ dR('." ) as �89 f dn 6 ( n  2 - -  1)("" ) 6 = Dirac function, and 
make in (3) the changes el --* e + { and n ~ n = N/~. This yields from (3) 

Replace now { by {*=  { + 2e as integration variable, and then take 
x+ = ({*+_ N)/2 as integration variables instead of N and {* 

B e = 4 f d x + f d x  6(e . (x++x ) - c 2 - x + . x _ ) f ( x + ) f ( x  ) (4) 

This is our general expression for Bg. Let us now restrict ourselves to 
the case of isotropic distributions. In that c a s e ,  Bg depends on ]el = c only, 
and one has 

1 
B~ = ~ f aO e~(c) 

where ~ is the unit vector such that c = &. Thus (4) can now be written as 

E 2 r (5.a) Bg=4 dx+x+f(x+) dx x 2 f ( x  )M(x+,x  ; 
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where 

l f f f  M ( x + , x _ ; c ) = ~ 7  dO d2+ d 2 _ 5 ( e . ( x + + x _ ) - c 2 - x + ' x  ) (5.b) 

2+ being the unit vector(s) parallel to x_+. Performing in (5.b) the 
integration, one finds 

1 f d 0 ~ ( c . (  x + x  ) - c  2 " 4re + x+ x_)  

1 (C2t_X§ "X ) 

- 2c Ix+ + x _ l  x~-~,+~3 \ c  Fx+ + x - i  
(6) 

where XE-~,+13(u) is the characteristic function of the [ - 1 ,  + 1] interval. 
Its value is +1 if - !  ~<u~< +1 and zero otherwise. From (5) and (6) 

M ( x + , x ;  c)-= 4rt----~2 f +* dv 
C -1  (X2+ + X  2 _ + 2 X + X - V )  112 

I c2+x+x-v ] 
X Z [  1,+1] C(X2 .~.X2 +2x+x_v) m (7) 

This last integral can be computed, and one obtains our final result. 
The support of M ( x + ,  x _  ; c) as a function of x+ and x_ is the quarter 

2 + x  2 plane x+_ ~> O. From the energy conservation x+ _/> c 2, so that M is 
2 + x2 = c 2 only. The consideration of nonzero outside the quarter circle x+ _ 

the argument of the characteristic function in (7) leads one to introduce the 
quartic Q of Cartesian equation x + 2 + c 4= (x2+ + x2_ ) c 2, and to divide 
the quarter plane into three regions: Fl,a b are in between Q and the circle 

2 + x  2 = c  2 . I n F l , a x + > x  a l thoughx+~<x_  in of Cartesian equation x+ _ 
FI, b. Let furthermore F 2 be the region outside of Q. 
Thus 

2~t 2 
in FI,a M ( x + ,  x ; c )=  (8.a) 

X+C 

2 g  2 
in Fl,b M ( x + ,  x ; c) = - -  (8.b) 

X C 

and 
7~ 2 

in /~2 M ( x  + , x ; c ) -  
X + X  C 

x [(x2+ + x  2_ + 2w2)1/2- (x2+ + x  2 -2w2)  1/2] (8.c) 
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where w2= [c2(x2+ + x 2 )  - c 4 ]  m. As a function of x+, M(x+,  x ;c) is 
continuous, but has discontinuous first derivatives in Q and on the first 
bisectrix. 
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